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We develop variational approximations to the survival probability for chemical reactions that are coupled to
a Markovian stochastic environment. These approximations provide upper and lower bounds and are able to
capture the correct asymptotic behavior for both a slowly fluctuating environment and a rapidly relaxing
environment. Intermittency, as observed in single molecule experiments, can also be computed using the
same approximations. We highlight the relationship of these approximations to previous approaches and
compare variational results to exactly solvable examples.

I. Introduction evolves according to

Traditionally, chemical kinetics concentrated on reactions with 3 =—DW — k()W 2)
easily separable elementary steps, each with a high activation

barrier. The individual elementary events therefore obeyed where D is the diffusion operatot. Wang and Wolynés
Poisson statistics producing exponential rate laws. The adventextended the formalism to include non-Markovian fluctuations
of faster experimental methods has led to a study of chemical through the path integral representation of the problem; their
processes lacking such barriers and having time scales comparesults were later rederived using a many-body diffusion
rable to the environmental fluctuations around each molecule. equationt?
Examples of such processes include diffusion controlled reac-  Exact solutions of eq 2 have been obtained for only a couple
tions in polymers, ligand binding in proteins, and even  of specific forms of the reactive sirfid-12Additionally, some
traditionally slow reactions in glasses which provide an espe- gpplications such as quenching of reactive groups on a polymer
cially sluggish environmert.The environmental fluctuations  are inherently difficult to calculate even numerically due to
lead to nonexponential ensemble kinetics and non-Poissoniancomplicated boundary conditioA%.The latter problem is of
statistics for the individual reaction rates. The deviation from jmportance in the experimental study of protein folding where
Poisson statistics entails the possibility of “intermittency™ it provides an important handle on the basic time scales of main
periods of rapid successions of reaction events interposedchain motiond415 To study these problems, approximate
between quiescent non-reactive peribd®ecent advances in  solutions are not only useful, but also necessary, for easy but
sensitivity allowing experimental kinetics to penetrate the single accurate inversion of experimental data to model kinetic
molecule levél make these deviations from Poisson statistics parameters.
directly observable. In this paper we explore some variational = Equation 2 couples two distinct time scales: the diffusional
approaches that give both upper and lower bounds to the ratesrelaxation rate set by the diffusion coefficidd and the reaction
We exploit the approximation scheme to study both the averagecoefficient at a particular configuration of the environment,
rate and intermittency growth rates. controlled by the strength of the reactive sinldlthough exact
Chemical reactions influenced by fluctuating environments solutions are often not possible, expressions for the survival
are fundamental in many diverse fields within physical chemistry probability are easily found in the limits where either time scale
and biological physics. (See refs 6 and 7 for an extensive dominate$ We assume that the fluctuations of the environment
compilation of applications.) Very often, the problem can be are bounded by an external potential, providing a nonvanishing
described in terms of a density that evolves in time according equilibrium probability distribution. When the reaction rate is
to the Smoluchowski equation coupled to a reactive sink, as slow compared to the rate of diffusion (the dynamically averaged
Zwanzig has recently emphasized, arising naturally whenever limit), the system is always approximately in equilibrium giving
the rate coefficient is coupled to a stochastic variable whose exponential relaxation; conversely, in the limit of a very slowly
dynamics is Markovian. A first-order chemical reaction can be relaxing environment (static limit), the survival probability is

represented by determined by the initial conditions resulting in a highly
nonexponential decay. Explicitly, the survival probability in
W = — ek(r)W¥ (1) these limits is asymptotically
where the relaxation of the probability distributi®i(r, t) is ) = et €Dy 0 (dynamically averaged)(s)

coupled to the dynamics of the environment representadtpy
through the first-order rate coefficierk(r). When the time
evolution ofr (t) is described by Markovian dynamic®(r, t) wherell..0and [l..[4 denote averages over the equilibrium and
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initial distribution, respectively. Looking forward to our analysis, be quantified through the higher order moments of the survival
we offer two parenthetical comments about the case of equi- probability. In this section, we also discuss the WF approxima-
librium initial distributions: (1) at very short times the initial  tion and its relationship to perturbative approaches in order to
decay of(t) is given by S(t) ~ 1 — <K regardless of the  put our approach into context. The derivation of our variational
value ofe. (2) Jansen’s inequality €7 < [@*0implies that, approximations to the survival probability is presented in section
for a givene, the dynamically averaged limit is always below 11l and is similar to that found in ref 27. In section IV we offer
the static limit; in fact, a result of our variational treatment is a comparison between the exact solution of two solvable
that the Laplace transforms of '&T and (& <Jare actually examples and our approximations. Explicit expressions needed
rigorous lower and upper bounds on the survival probability to calculate the bounds for the examples, as well as the
for a system initially at equilibrium. connection between the present work and Doi’'s variational
In the intermediate regime of comparable reaction and functional are contained in Appendices. Throughout the paper
environmental relaxation rates, achieving a universal ap- both the formalism and examples focus on Markovian environ-
proximation scheme has proved to be rather difficult, resulting ments, though the method may be generalized to approximate
in many different approaches. For the purposes of this paper,non-Markovian processes as well.
the first approach was the Wilemskrixman (WF) closure
approximation applied to reaction dynamics in polymérs. II. Background
Related subsequent work has focused on both the derivation
and region of validity of the approximation. Higher order ~ A. Formulation of the Problem. We begin with the
corrections to the WF approximation can be obtained through Smoluchowski equation given in eq 2 that describes the time
perturbation theory218 In another perturbative approach, the €volution of ¥(r, t), the probability of finding the system with
static and dynamically averaged limits can be well described environmental variable at timet. (For consistency with the
separately, increasing the dynamical range that can be studied®xamples given below,is taken to be a scalar variable, though
through interpolatior® Other, perturbativi#®21and nonpertur- the formalism remains the same when generalized to higher
bative>~25 approaches have also been employed for this dimensions.) We assume thatis confined by an external
problem. While the WF closure approximation is only applicable potentialu(r). The diffusion operator in eq 2 is then given by
for the case of equilibrium initial conditions, many of the other D = —3Doe #Y9,6°)¢), whereDy is the diffusion coefficient
approaches cited above do not require this restriction. Soon afterand 8 = 1/kgT is the inverse temperature. In contrast to free
the WF approximation was published, Doi showed that it could diffusion in which the mean-square fluctuations are unbounded
be derived from an variational upper bound on the decay rate and the equilibrium distribution vanishes, diffusion confined by
of the survival probabilityé Improvements to the WF closure ~ an external potential has finite mean-square fluctuations deter-
can then be generated through different choices of the trial mined by the equilibrium Boltzmann distributiont¥e{r) =
function. e P, _ _ o _
In this paper we develop variational upper and lower bounds It is convenient to consider also thg adjoint dn‘fusmni equation.
on the survival probability itself. Doi's variational approximation SUPSHtUtingW(r, ) = Wedr)o(r, 1) in eq 2, and using the
is related to the upper bound derived here, but the derivation is PrOPerty DWegp = Wed. p for the adjoint operatot, gives
quite different. We follow the formulation of the problem given the adjoint diffusion equatich
in ref 27, specialized to diffusion influenced reactions in systems

with an environmental coordinate that has bounded fluctuations. dp=—"Lp—ek(r)p (4)
Like the WF approximation, the bounds are rigorous only in 0 " ] o
the special case of an equilibrium initial distribution, though With L = —e™03:Dee#"3,. For use in future derivations,

they can be of use in approximating the survival probability We note that that. is a semipositive definite, self-adjoint
for nonequilibrium initial conditions as well. Much like the  Operator over the equilibrium distribution, i.eAL Al 0, and
situation when using variational principles in quantum electronic (AL BLJ for any functionsA(r) andB(r). .
structure, the errors in most observable for the nonequilibrium ~ Sincep(r, t) satisfies the adjoint (or backward) Smoluchowski
situation are of first order in the deviation from the exact result €quation.o(r, t) can be interpreted as the probability that the
for the solution of the diffusion equation, while the equilibrium ~ System initially at r remains unreacted at time3 The
averaged functional itself has errors only to second order (like @PPropriate initial condition is thep(r, 0) = 1. The starting
the energy in the ordinary variational problems of quantum Point for our discussion is the Laplace transform of eq 4
mechanics).

We note that other related variational functionals have been
introduced for the problem of diffusion through a porous
materiaf®2° and subsequent development of complementary
variational bounds for this application can be found in refs 30
32. Although these studies are closely related to the present
work, they are distinct. In those studies, the sinks, or traps, serve
to define (complicated) absorbing boundary conditions within
which particlesfreely diffuse. Accordingly, treatment of the
boundary conditions become the central focus of these ap-
proximations, whereas in the model described above, the
reaction enters as a sink function in the diffusion equation rather . )
than being incorporated directly into the boundary conditions. =~ [T dtt" §(t) (6)

The organization of the paper is as follows. In section I,
after formulating the average rate problem, we indicate how which are measures of the decay rat®.can be conveniently
the intermittency observable in single molecule experiments canwritten in term of the Laplace transform of the survival

(+L +ek(r) p=1 (5)

where we have denoted the Laplace transformed densidyrby
w) = [{ dt e p(r, t).

The main quantity of interest is the survival probabilgy),
defined as the probability that the reaction has not occurred at
time t, can be obtained by averagingr, t) over the initial
distribution, Wo(r): S(t) = J dr Wo(r)p(r, t) = [b(t)d. The
moments of the survival probability are also of interest since
they define the meanth moment passage times
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probability as N
Poissonian

dn* 1
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Signal

In particular, the mean first passage time (MFPT) is simply 0
= $(0). For equilibrium initial conditionsWo(r) = We(r), we b v
denote the survival probability and MFPT I8t) = [p(t)Jand fermitent
7 = S0), respectively.

B. Intermittency. For many chemical reactions, a large free
energy barrier induces a time scale separation between the mean
lifetime of an individual reactant molecule and the relatively 0
fast elementary time scale of the environmental dynamics. Time [a. u]

Consequently, these reactions are in the dynamically averagedrigure 1. Schematic time traces of two single molecule experiments
limit in which the rates are determined by near equilibrium where a reaction event gives a vanishing signal. (a) Poissonian statistics.
stochastic processes. Here, the probability per unit time that an(b) non-Poissonian statistics.

individual molecule undergoes the reaction is a constant equal . . . . ) .
to the average reaction rate. Thus, the kinetics are described bfnw_ronmental vanab_le 91 anq 2, rgspectlvely, that is,
the usual first order rate law, and the statistics of the lifetimes equivalently, none being found in the tinre= t, — t; around
of individual molecules obey Poissonian statistics. 2 = (t + 2)/2

Howgver, this des_cnpt|on breaks down when the sto_che_lstm B(rlt) = p(ry, by Ty 1) (8)
dynamics of the environment become slow. Then, the lifetime
of an individual reactant molecule is dominated by the raré Thjs probability can be correlated at different nonoverlapping
configurations of the environment poised to react. As a result, times ¢, < t, < t3 < ty)
the average lifetime is not determined by the most probable
one, but primarily by the tails of the distribution. In this case, Bt )p(Tlta) = o(r, t 1o 6) p(rs ty Tyt (9)
the statistics of the stochastic trajectories of the molecule can ~ B
not be described merely by the average, but higher order wherety> = (t1 + t2)/2, andtss = (i3 + t4)/2 and where we take
moments are necessary as well, i.e., they are non-Poissoniant = t, — t; = t4 — t3. We can approximate this as the ling
A measurement of the average rate from a large ensemble of— ts4 and averaging over environmental fluctuations which
molecules does not clearly indicate the extent to which the modulate the rate
dynamics is determined by the tails of the environmental
distribution. On the other hand, the origin of nonexponential S(r) = B(7)°0 (20)
relaxation in slowly fluctuating environments such as glasses
is still incompletely understood. Consequently, monitoring single ~ The deviation of the ratiRy(r) = S(r)/(r)? from the
molecule reactions can give insights to this unresolved problem Poissonian valu&(r) = 1 is a measure of the intermittency.
by elucidating the impact that rare configurations have on the The intermittency rati®(z) can be evaluated by a path integral
mean reaction rate. formalism343% Formally, the solution to eq 1 for a particular

To describe the non-Poissonian character of single moleculetrajectoryr(t) can be written as
time traces requires the evaluation of multitime correlation .
functions. These have been hard to describe in a simple way. W(r,t) =exp[—¢ ‘/; dt k(r(t))] (11)
Here we introduce the idea of an intermittency growth rate.

Although the higher order corrections clearly will be multi- The survival probability is then the average of this exponential
exponential, the magnitude of the deviation can be roughly over all possible paths (subject to specified initial and final
characterized by a typical growth rate. This is much like the conditions). From this path integral representation, it can be
time-honored procedure of characterizing even non-exponentialreadily shown thagy(t) is simply the survival probability(t)
decays by a mean first passage time. with the replacement — 2¢.3435This correspondence allows

Analyzing the statistics of a single molecule experiment that us to investigate intermittency directly by analyzing the original
measures the apparent instantaneous lifetime associated witlfBmoluchowski equation. We can then use any of our variational
individual reaction events can distinguish between these typesapproximations to the survival probability for the problem with
of reactions. Consider a hypothetical reaction in which the an enhanced sink strength ® evaluate the growth rate of the
product, once formed, is recycled very rapidly back to the intermittency ratio,S(7)/S(r)? defined in this way. While a
reactant state. The qualitative time traces for two single molecule limited characterization of the higher order statistics, the
experiments are illustrated in Figure 1. In contrast to the signal intermittency growth rate shows at a glance where big deviations
for a rapidly relaxing environment shown in Figure 1a, the signal from Poission statistics are expected.
for slowly fluctuating environments is intermittent: long periods C. WF and Related Approximations. In this subsection,
of inactivity separating clustered measurements as shown inwe will discuss the WF approximation to reaction dynarfi¢s
Figure 1b. and indicate some connections to previous work on this problem.

There are several ways to characterize this intermittency Not only does this put the present method into proper context,
quantitatively. Ideally the system should be recycled to the it also provides an opportunity to define the quantities of interest
starting point instantaneously on the time scale of the environ- throughout the paper.
mental fluctuations. We can define a nearly instantaneous The derivation of the WF approximation consists of two steps.
survival probability,p(r1, t1; r2, t2), as the probability of no First, averaging eq 5 ovéP¢((r) gives the Laplace transformed
excursion being found between timés and t, where the survival probabilityS(w) in terms of [k p0]

Signal
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P _ 1 - mant!® We approach this same issue by employing a variational
Sw) = s (1— & p0) (12) procedure to generate this interpolation.

where we have used pl= 0, and the self-adjoint property  ||I. VVariational Bounds

of L. On the other hand, eq 5, can be written as the integral

In this section we derive the variational bounds

1 1 . Flg] = [pl= K[] (19)

p=———e——— kp (13)
w+L o+l valid for any functionsé(r, w) and ¢(r, w). These are
Multiplying this equation byk and taking the average yields an complementary bounds on the survival probability for equilib-

equation

alternative equation involvingk 30 rium initial conditions§(w) = [p(w)LI The lower bound is based
on eq 5, whereas the upper bound is derived from the equivalent
e 1o ~1pa integral equations, eq 13 or eq 18. In order to present the
kpt= W KO elk (@ + L) koD (14) operator algebra clearly, we set the initial conditjen, 0) =

L f(r) and sef(r) = 1 at the end of the derivation. Then, the exact
In the WF closure approximation, it is assumed that the system ¢\ ;tion for the probability density is formally= (o + L +

is always nearly in local equilibrium, implying that the reduced ek(r)) 1 f, and the bound in e ;
. . . > . , g 19 is on the quanfipyfl]
probability density has no spatial dependerige, ») = (o). We first consider the lower bourf¢]. We want to construct

Requiring that this approximation gives a consistent expression ¢ ,nctional such that its functional derivative is
for [k p[leads to the approximatiar(w) ~ Kk pUKL Applying

the approximation to right-hand side of eq 14, together with eq OF[g] =(w +L +ek(r)) ¢ — f (20)
12, gives the WF approximation to the survival probability
Consequently, the stationary conditi®R[¢*] = 0 implies that
A 1 e[k @* satisfies eq 5, i.e., the exact density optimif®]. Since
Swe(w) = w 1- (K elﬁ(a))) (15) L is self-adjoint, the functional
whereD(w) = Kw + L)~ kO Flol = - g (o t L+ ek Ut 20p 0 (21)

Here, a remark about notation is necessary landh, are
two arbitrary functions of the dynamical variabilethent;(w
— L) 'hy[denotes the Laplace transform of the time correlation
function betweerh(r(t)) and hy(r(0)). Explicitly,

satisfies eq 20 and has the optimal solutjoh= p with F[¢*]
= [p fJ The positive-definite property df ensures that the
quadratic term of[¢] is negative. Therefore, the stationary
solution maximizes=[¢], proving the lower bound inequality
in eq 19.

We focus now on the similar derivation for the upper bound.
Multiplying eq 13 byek(r) (to make the second term symmetric)

(o — L) *h,0= [0 dte " ty(t) h0)D  (16)

where gives the starting point for this derivation
[hy(t) hy(0)= [ [ dxdly hy(X)G(x, tly) Weey) hoy) (17) I T T
ekp—ekw_H_f ekw_H_ekp (22)

and G(x, tly) = e Pt 5(x — y) is the Green’s function in the
absence of the sink term. ThLB((U) in eq 15 is identified as Proceeding as before, we want a functioM[g] whose
the Laplace transform of the sinlsink correlation function, variational derivative is
D(t) = [k(t)k(0)
Since the WF approximation assumes that the system is _ 1 _ 1
always near equilibrium, it becomes exact in the dynamically OM[E] = [elc+ Ekw +L ekj s Ekw +L F @3
averaged limit (smak/Do). However, the approximation works o ) . .
surprisingly well in some cases even when this equilibration SO thatoM[£*] = O implies £* is the solution to eq 22, i.e.,
assumption is violate??. The integral equation in eq 13 can be MI[&] is optimized by&* = p. The self-adjoint property of
expanded in a perturbation series about the dynamical limit in €nsures that the functional
powers ofe. The closure approximation is a particular summa- 5 5 1
tion of higher order terms, as shown in ref 12. Consequently, M[E] = ek ETH €" Bk (w + L) k&L
this resummation of the perturbation series accounts for the 2 k(o + L) 1fO(24)
success of the approximation even when the assumption that
the system is approximately in equilibrium is not valid. satisfies eq 23. Here, the stationary value is a minimui[a,
The WF approximation becomes less accurate as the envi-since this time the quadratic term is positive. The minimum is

ronmental relaxation slows. The alternative integral equation at&* = p with M[£§*] = — [&* ek(w + L) fQ0Using @ + L
+ €k) p = f to eliminate&* ¢k in this expression foM[£*]

(18) gives the upper bound

11
o+ ek() w+ekr) P

p —
_ _ B fO— M (w + L) < M[£] (25)
is a more useful representation to study the problem near the
static limit (large €/Do); this can also be expanded in a This proves the upper bound inequality in eq 19, with
perturbation series fdpL] but this time the expansion is about
the static density in powers dbo. In order to increase the Kaynl &l =M[E] + (0 +L ) O (26)
accuracy over a wider range of parameters, interpolation
schemes have been proposed incorporating the lowest ordefThe subscript stands for “dynamical” referring to diffusion
terms obtained from eqs 13 and 18 in a hybrid Papproxi- propagator of the integeral equation (eq 13).
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+ L )~! kD[R] Evaluating the upper bound et recovers the

consider the other integral equation (eq 18) as the starting pointWF approximation to the survival probability (eq 18lyn[Cc*]

of the derivation. This gives an alternative upper bound. Since
the derivation is analogous to the derivatiorkafq[5], we just
quote the resultipl= Ks{&], whereK¢{&] can be obtained by
making the replacememt < ¢k in the expression foKgyn[&]
(see eq 30 below). Here, the subscript stands for “static”,
referring to static propagatan(+ k)~ of the integeral equation
(eq 18).

Settingf(r) = 1, we have the final results for the comple-
mentary bounds

Fl¢] = Sw) = K[E] (27)
where
Flol = — [p (w + L + €k) p[H 2[p0O (28)
andK[&] is either of the following expressions
Koyl €] = €k 20 € (& k(o + L) " K €T i ~ 2 %D
(29)

KJE =B LEH G L (w+ ek) ' LEH Qo + k) 'O
2 L (o + k) ~'0(30)

The expression foKqy[&] has been simplified usingL AO=
0, for arbitraryA(r).

As stated above, this bound applies only to the case of an

equilibrium initial condition. It may appear that this restriction
can be relaxed by using a nonequilibrium weight to define the
averages in the derivation df[¢] and K[£]. However, the
bounded character of the result depends on the self-adjoint an
positive definite properties af which fail to hold for arbitrary
initial distributions. Nevertheless, the variational equations for
an equilibrium initial distribution can be used to approximate
o(r, w) by the trial function that optimizeS(w)C] e.g.,p(r, ®)
~ &*(r, ). Naively, one expects that the approximation should
be valid for regions of low potential, since the equilibrium
distribution used to determine the optimized wave function
suppresses errors for large

Before considering specific examples of this approach, it is
instructive to look at these bounds for the most elementary trial
function, a constant (with respect th

For ¢ = ¢(w), the lower bound becoméqc] = — c¥w +
e[RD) + 2c. The maximum ofF[c] is at ¢* = (w + RO,
giving the optimum valud=[c*] = c*. Thus, we see that the
lower bound ispayn(w) = (w + €& 2, the Laplace transform
of the dynamically averaged limit given in eq 3.

We now consider the upper bound given IKy&], when &
= c(w). SinceKg{c] = Hw + ek)~0is independent o€, the
upper bound is simplyps(w)d= [w + €k)~1[] the Laplace
transform of the static limit given in eq 3. Combining these
limits, we have the result

|:.Ebdyn (w) U= gw) = [ﬂ)st(w)[j

giving rigorous bounds on the survival probability consistent
with Jansen’s inequality applied to eq 3, as indicated in the
Introduction. Notice that this result depends on equilibrium
initial conditions; obviously, for a given sink function, it is
possible to choose initial conditions that result in a very rapidly
decaying survival probability, even in the static limit.

Finally, we consider the upper bound givenHy[§], when
& = c(w). Kayrdlc] has a minimum atd) ! = o (KO+ ek (o

(31)

= SNp(w). Combining this with the lower bound give the limits

Bayn(@)= o) = Sye(w) (32)
This result is reminiscent of Doi's variational bound on the
decay rate. Indeed, it is shown in Appendix A that Doi’'s formula
is related to the upper bound obtained by settimg= 0 in
Kayn[&], i.€., the bound of the MFPT; = 0).

For general trial functions, we expect that whetKgf&] or
Kayn[&] gives a more stringent upper bound depends on the
relative rates of the environmental relaxation and sink parameter
strength. For example, near the static lirkig{£] will presum-
ably provide a smaller upper bound thEg,[£] for the same
trial function. However, it is important to note that eithi€g] &]
or Kgyn[£] is capable of determining the survival probability to
arbitrary accuracy, limited only by the flexibility of the trial
function. For the purposes of demonstrating the approach, it is
enough to consider only one of these bounds. For clarity of
presentation, we will focus on the bound given Kyn[&] in
the remainder of this paper.

IV. Examples

In this section we apply the complementary variational bounds
to two problems in one dimension. One advantage of a
variational formulation is that it may facilitate analytic ap-
proximations to the problem in higher dimensions provided the
trial function is simple enough. We have used the present
variational method for a highly multidimensional problem

4nvolving fluorescence quenching in a chain polymer which is

partially ordered. This latter problem models fluorescence
resonance energy transfer in partially denatured proteins. A
report of that work will appear elsewhere. In the examples
presented below we evaluate the bounds numerically for chosen
trial functions. Admittedly, in one dimension it is easier to
integrate eq 2 directly to obtain a numerical solution than to
evaluate the bounds presented here. However, the purpose of
these examples is to illustrate this variational approach and to
provide a foundation for analyzing more difficult problems.

We assume a harmonic confining potential centered at the
origin, BU(r) = r3/262. In this potential, the average position
vanishes, but the mean-square displacement is fiifig= 62.

The Green’s function for the diffusion operator, used to calculate
the correlation functions in our approximations, is given by

_ _ 2
S ) = ) ] 33

1
exp
J2r6? (1 - (1) [292 (1= ¢’

where ¢(t) = [i(t) r(0)H? is the pair correlation function
describing the dynamics of the environmental fluctuations. The
form of the Green’s function is determined by the harmonic
potential, not the nature of the fluctuational dynamics. For
Markovian dynamics, the fluctuations decay exponentigi(y),
= exp(-t/r;), wheret, = 62Dy sets the time scale of the
diffusion within the harmonic well. However, since eq 33 is
the Green’s function for non-Markovian fluctuatio¥sthese
dynamics can be considered within the variational formalism
as well, if in fact these fluctuations are a projection of a higher
dimensional Markov process inspace itself.

In these examples, we assume Markovian dynamics for
simplicity, as well as equilibrium initial conditions. We consider
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two forms of the sink function: quadrati&(r) = r%62, and TABLE 1: Symbols for Bounds Considered in Examples

exponentialk(r) = e~". Both forms of reaction sink (with a lower bound upper bound
harmonic confining potential) have applications that can found

L . e ; : Fl¢] Kaynl €]

in in the literature. The diffusionreaction problem with a [ayn[= (@ + €K [ald= Mo + k)10
quadratic sink has been used to model diffusion through a Swr(w)

fluctuating bottleneck of radius and can be solved explic- _ ) _ _
itly. 1112 The exponential sink has been used to model the More flexible trial functions can lead to still more accurate

dynamics of ligand binding in myoglobin; here, the environ- @pproximations. As an example, we choose the trial function
mental variabler describes the binding free energy barrier, . _

where the fluctuations arise from transitions between different §2 = Cabs@p, 1) = Cf(w, + €k(r)) (35)
conformational substates of the protéifihis problem can be where the coefficientc, and w, are now both variational
parametersé, interpolates betwee, = ps{w, ) atwp = w

solved numerically by integrating the differential equation
. 19 : T . L
d|rfectly.. EverT though thIS.SO||utIOE i'?umencall,l wg. W.'” St'."h and&, approximately constant for sufficiently large,. To find
refer to it as the exact survival probability to easlly distinguish e timal bounds, we first express the stationary values
it from our variational bounds. a function of wp (from the results of Appendix B witly =
To proceed, the trial function must be specified. Motivated (ps{wy, 1))) and then optimize this expression with respect to

by the limiting expressions for the survival probability, we w,.

choose a trial function that is a linear combinatiorpgfw, r) We note that, technically, the lower bound is somewhat less
= 1/(w + €k(r)) and its inverse:£ = c1(1 + €k(r)) + cps{w, involved to calculate than the upper bound, sifde] only

r). Allowing the coefficients of the first two terms to vary requires calculation of various equilibrium averages, whereas
independently gives the trial function K[&] needs the Laplace transform of time correlations as well.

Below, we compare the exact (or numerical) survival prob-

(34) ability to the boundsF[{c}] and Kqy[{C}] given eq 27. We

also consider the bounds in eqs 32 and 31; they serve as a

reference, placing our results into context. (Recall that the latter
where the coefficientgc} are variational parameters. Choosing bounds were obtained by setting= c; = 0 in the trial function
coefficients as variational parameters, rather than other func- ;). For reference, the quantities of interest are collected in Table
tional forms has the advantage that the optimizatiorr[af] 1.
andK][&] can be done explicitly, leading directly to interpolation A. Harmonic Sink. For a harmonic sink, many of the
formulae. Forg; the expressions for the bounds are given in quantities needed to calculate the bounds can be obtained
Appendix B withg = (1, k(r), ps{w, r)). analytically. However, these exact formulae are not very

&1 =Cy F CK(r) + Cypgw, 1)

12.0

10k eT, =5.0 © | 1.0 €T, =10.0 () |

0.0 . , - :

0.0 2.0 4.0 6.0 8.0 10.0

Figure 2. Survival probability as a function of frequenay for selected values of the strength parametée—d) for the harmonic sink. Heavy
lines correspond to exact (solidj[{c}] (long dashed)Kqy[{c}] (dashed). Light lines correspond fa{(dashed)Sye (dotted-dashed)pqyn[{long
dashed)w is in units of 1f; = Do/62. Not all lines are distinct in every plot, since they may overlap. Only the bound &came shown, since the
bounds fromé&; are not easily distinguishable from the exact solution at the scale of the plot.
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enlightening for our purposes. We note here that, for this
problem, the equilibrium average of static densipg(w)d
diverges atv = 0. This is relevant to our discussion, since our
trial function contains this term, affecting the variational bounds
at smallw. This is a peculiarity of this specific form of potential
and reaction sink.

In Figure 2 we show the survival probability as function of
frequency for increasing values of the reaction strergths
noted in the Introduction, for short enough times(t)Oand
[payn(t)agree for any value of; for correspondingly large,
eq 31 implies that the variational bounds solve the survival
probability exactly, as can be seen in the each of the plots in
Figure 2.

For er, = 0.1, the system is near the dynamically averaged
limit. Figure 2a shows that all approximations exc&ptJare
in good agreement with the exact answer.Aisicreases, the
approximations become less accurate, particularly for small
The variational bounds andKgy, are much closer to the exact
survival probability than the other bounds ascreases. For
ety = 10.0, Figure 2d, the environmental relaxation is slow
enough that the WF approximation is inadequate. At this value
of € it is clear that the full variational bounds are accurate down
to w ~ 2.0; for smaller frequencies, the lower bouR{E;]
decreases slowly and the upper bolagh{51] increases rapidly
asw — 0. This behavior is due to the diverging static density,
as mentioned above. The variational bounds from the trial
function & does not show this behavior at smal, and
approximates the survival probability well throughout the
parameter range, with a maximum deviation from the exact
survival probability of only 5% for the upper bound @at= 0
for e = 10.

B. Exponential Sink. In this example, we consider the sink
functionk(r) = e~". While our methods are still applicable to
the full survival probability, for brevity we will focus on the
MFPT, t = S0). Figure 3a shows the dependencerobn
reaction strength for oo = 1/0. The agreement betweerfrom
the dynamically averaged and static limig, andzs) with the
exact MFPT clearly indicates thatcovers the full range from
the dynamically averaged to static limit. Consequently, the
bounds given by both trial functiofy and&, on the MFPT are
close to the numerical result for both small and large values of

€ as well. These bounds are in reasonable agreement with the

numerical solution in the entire range, with a fractional error
only as large as 30% for trial functidi. The bounds from the
trial function&; have excellent agreement with integrated result,
giving a fractional error of less than 1%.

For largera, the probability distribution for < 0 is depleted
very rapidly, potentially shifting the distribution further from
equilibrium; of course, this still depends on the strergffigure
3b shows the MFPT as a function effor . = 3/6. While
qualitatively similar to Figure 3a (witle = 1/0), the bounds
from trial function&; are hardly more restrictive than the bounds
determined fronrs;, Twr, andzgy,. Trial functioné; provides a
much stricter bound, with a with fractional error of 10%.

We now consider the question of intermittency in this
example. A simple approximation for intermittency raRg(t)
= S(t)/9t)? defined in section llb can be obtained using
exponential fits to the individual survival probability moments
expected from the mean first passage timgs) ~ e . Then,
the intermittency growth ratg = —t~1 log Rx(t) can be written
as a function of the reaction strength as

-1
€

K~ 20—t (36)

wherez, is the MFPT for the reaction strengéh A deviation

Portman and Wolynes
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107'%
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Figure 3. MFPT (z/7;) as a function of the strength of the siek,
wheret, = 6%/Dq, for the exponential sink with (a) = 1/6 and (b)a

= 3/6. Plots for the exact, upper, and lower bounds are labeled on
graph. As in Figure 2, only the bounds frofnare shown.
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Figure 4. Intermittency growth rate z, as a function of the strength
of the sinket,, wherer, = 6%/D,, for exponential sinkd = 1/6). Results
for exact, lower boundr, and upper boun#gy, are labeled on graph.
Also shown, is the inverse MFPif/t (scale on the right). As in Figure
2, only the bounds fron§; are shown.

in the growth rate from zero indicates that the statistics are non-
Poissonian. Figure 4 shows the intermittency growth rate as a
function of e for the exact solution and the upper and lower
bound, as well as the exact inverse MFPT. The intermittency
growth rate has the expected behavior of vanishing in the
dynamically averaged limit (smal) and increasing as the
environment slowse(increases). The intermittency growth rate
is smaller over most of the range than the rate itself, so small
errors int are amplified in«;. The estimates from the upper
and lower bounds with trial functiofy agree qualitatively with

the numerical result, but only within a factor of 2 of The
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trial function &, provides however a highly accurate estimate  Now consider the bound given w) < Kayn[£]. Minimizing
for the intermittency growth rate (within 3%). We note that the Kgyi[0§] with respect too gives the equivalent bound
intermittency growth rate as analyzed here is not bounded by

either approximation since we have taken the difference between PN 1 €Ik Slﬁ

the each bound at two values of It is possible to develop Sw) = o a)z(e[REZD-I— A K(w+L )—1 keD) (AS)
more refined variational bounds involving the moments of the

survival probability explicitly which we hope to pursue in the Written in terms ofHy:(w) this becomes

future.

N k §2D+ elqu(a))
V. Conclusion Sw) = 5 =
o(K ET M (w)) + ek EH

(A6)
Fluctuating environments greatly influence the kinetics of

chemical reactions, when their relaxation is slow. Motivated (For an alternative derivation of eq A6, set= (£) in eq B9).

by such problems, we have developed approximations basedSince the long time limit of3[k(t)&(t)] O[k(0)E(0)]Cvanishes,

on a varitional principle that provides bounds for survival |2|k§(o) is finite. Consequently, evaluating eq A6m@t= 0 gives

probability. The rigorous bounds are quite general and can bethe bound on the MFPT = S0):

usefully applied to many dimensional problems which have

more elusive solutions. For example, the variational approxima- & gz[H— d:'kg(o)
tions developed here have been generalized to treat reactions T= —ﬁ (A7)
with more complicated fluctuational dynamics, such as fluo- kg

rescence quenching between monomers in a polymer chain,ry, o eq A4 and eq A7 are equivalent provided thiat is
where the polymer is usually modeled as a chain of monomers;yqantified as the MFPT.

connected sequentially by harmonic potentials, resulting in pair

correlations that contain a broad distribution of relaxation rates. Appendix B: Explicit Expressions

This situation is described by a corresponding multi-dimensional o . ]

diffusion problem that is difficult to solve numerically, but can ~ We show the explicit expressions for the optiméif c*}]
treated with our variational approximations. These approxima- andKay[{c*}] using the trial function of the forny =5 cigi(r,
tions also allow us to quantify intermittency which can be w). In the derivations below, v_ve_make use of the definition of
observed using single molecule techniques. An application to WO vectors: the vector of variational parameters {c;} and
fluorescence resonance energy transfer in single-moleculeth® vector of basis functior= {g} . In this notation the trial

folding experiments is described elsewhere. function can be written a§ = J' - ¢, where “t” denotes the
matrix transpose.
Appendix A: Relation to Doi’s Variational Bound 1. Lower Bound F[{c*}]. To find the maximum of[{c}]

. L with respect toc;, we first write eq 21 in matrix form
In ref 26, Doi presented a variational lower bound on the P - a

Qecay rate.. Both the )‘orm of this bound as ngl as.its derivation Flc] = —c oA -c+ Z@TD- C (B1)
is apparently very different than the one given in the present

paper. The expression for this bound is greatly simplified when where the matriXA has elements

x is small. We show here the simplified bound in ref 26 is in

fact the same bound obtained for the MFPT givenkiay[&]. Ar=100 (0 +L + kgl (B2)
In the notation of the present paper, eq 47 of ref 26 gives the ) . .
bound The maximum of- is then straight-forward: of) " = [g'(» A~2
and
ke
iz lo[&] = - (A1) Flct] =@’ A"+ g0 (B3)
KT €Y oy e 13

2. Upper Bound Kgyn[{c*}]. The expressions for the station-
Here, {in} and {¢n} are the respective eigenvalues and ary values oKgyqc] and F[c] are similar. Here, the minimum
eigenfunctions of the adjoint operatol: ¢, = An@n. The sum of Kgyr[c] is at (€)' = G'kw - A~L, and
in eq Al excludes the lowest eigenvaldg which vanishes

' libri 1 1 -
?]?t(;%éze system eventually comes to equilibrium. In operator Kdyn[C*] _ = w_z @T KO AL K g0 (B4)
Z) Ayt B, £08 = Hye(w = 0) (A2)  where the components & are
n=
where Ay = eg kgt g k(@ +L) " kgD  (B5)

N 1 As it is written, this formula cannot be naively evaluated at
H(w) = k(o +L) kil Ekgﬁ/w (A3) o = 0. To write this in a more convenient form, we explicitly

. subtract the equilibrium component of the correlation function
fie(w) is the Laplace transform aBIKOED] OKOEONT o the cecond rorm: P

whered[k&] = k& — k&L The equilibrium correlationk £Chas

been subtracted, sindg is excluded in the summation. Thus, 62@_ K(w+L )fl k g 0= eZEcB[g-k] (w+L )fl O[kg]

eq Al can be written as ! !

2
e £ 65 [@, k(Ik g0 (B6)
(A4)

KZ— =
[RSZD'F €H,(0) where we have used the notatiéfgik] = gk — [g k[ This
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allows us to writeA as the sum of two matrixed, = A; + A,
with

A= €lg k g0+ € B[gh (v + L) 0[kgJO (B7)
andA; is the direct product oé(k gM with itself (second
term of eq B6). Breaking up in this way allows us to use the

Sherman-Morrison formuld® to expresdA 1 in terms of A7 ™:

2 (At kgD ® (9" kF ALY

Al=A - (B8)
' o+ kD AL Koo
Substituting this into eq B4 leads to our final result,
1 1
Kdyn[c ] - (Bg)

o+ g kD A7 kgO

Since the equilibrium correlations have been subtracted in the

definition of A; (eq B7), it is clear that eq B9 is finite at =
0.
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