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We develop variational approximations to the survival probability for chemical reactions that are coupled to
a Markovian stochastic environment. These approximations provide upper and lower bounds and are able to
capture the correct asymptotic behavior for both a slowly fluctuating environment and a rapidly relaxing
environment. Intermittency, as observed in single molecule experiments, can also be computed using the
same approximations. We highlight the relationship of these approximations to previous approaches and
compare variational results to exactly solvable examples.

I. Introduction

Traditionally, chemical kinetics concentrated on reactions with
easily separable elementary steps, each with a high activation
barrier. The individual elementary events therefore obeyed
Poisson statistics producing exponential rate laws. The advent
of faster experimental methods has led to a study of chemical
processes lacking such barriers and having time scales compa-
rable to the environmental fluctuations around each molecule.
Examples of such processes include diffusion controlled reac-
tions in polymers,1 ligand binding in proteins,2 and even
traditionally slow reactions in glasses which provide an espe-
cially sluggish environment.3 The environmental fluctuations
lead to nonexponential ensemble kinetics and non-Poissonian
statistics for the individual reaction rates. The deviation from
Poisson statistics entails the possibility of “intermittency”:
periods of rapid successions of reaction events interposed
between quiescent non-reactive periods.4 Recent advances in
sensitivity allowing experimental kinetics to penetrate the single
molecule level5 make these deviations from Poisson statistics
directly observable. In this paper we explore some variational
approaches that give both upper and lower bounds to the rates.
We exploit the approximation scheme to study both the average
rate and intermittency growth rates.

Chemical reactions influenced by fluctuating environments
are fundamental in many diverse fields within physical chemistry
and biological physics. (See refs 6 and 7 for an extensive
compilation of applications.) Very often, the problem can be
described in terms of a density that evolves in time according
to the Smoluchowski equation coupled to a reactive sink, as
Zwanzig6 has recently emphasized, arising naturally whenever
the rate coefficient is coupled to a stochastic variable whose
dynamics is Markovian. A first-order chemical reaction can be
represented by

where the relaxation of the probability distributionΨ(r , t) is
coupled to the dynamics of the environment represented byr (t)
through the first-order rate coefficientεk(r ). When the time
evolution ofr (t) is described by Markovian dynamics,Ψ(r , t)

evolves according to

where D is the diffusion operator.8 Wang and Wolynes9

extended the formalism to include non-Markovian fluctuations
through the path integral representation of the problem; their
results were later rederived using a many-body diffusion
equation.10

Exact solutions of eq 2 have been obtained for only a couple
of specific forms of the reactive sink.9,11,12Additionally, some
applications such as quenching of reactive groups on a polymer
are inherently difficult to calculate even numerically due to
complicated boundary conditions.13 The latter problem is of
importance in the experimental study of protein folding where
it provides an important handle on the basic time scales of main
chain motions.14,15 To study these problems, approximate
solutions are not only useful, but also necessary, for easy but
accurate inversion of experimental data to model kinetic
parameters.

Equation 2 couples two distinct time scales: the diffusional
relaxation rate set by the diffusion coefficientD0 and the reaction
coefficient at a particular configuration of the environment,
controlled by the strength of the reactive sinkε. Although exact
solutions are often not possible, expressions for the survival
probability are easily found in the limits where either time scale
dominates.8 We assume that the fluctuations of the environment
are bounded by an external potential, providing a nonvanishing
equilibrium probability distribution. When the reaction rate is
slow compared to the rate of diffusion (the dynamically averaged
limit), the system is always approximately in equilibrium giving
exponential relaxation; conversely, in the limit of a very slowly
relaxing environment (static limit), the survival probability is
determined by the initial conditions resulting in a highly
nonexponential decay. Explicitly, the survival probability in
these limits is asymptotically

where〈...〉 and 〈...〉0 denote averages over the equilibrium and

∂tΨ ) - εk(r )Ψ (1)

∂tΨ ) - D Ψ - εk(r )Ψ (2)

S(t) ){e-〈εk〉t ε/D0 f 0 (dynamically averaged)

〈e-εkt〉0
ε/D0 f ∞ (static)

(3)
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initial distribution, respectively. Looking forward to our analysis,
we offer two parenthetical comments about the case of equi-
librium initial distributions: (1) at very short times the initial
decay ofS(t) is given byS(t) ≈ 1 - ε〈k〉t regardless of the
value of ε. (2) Jansen’s inequality e-〈x〉 e 〈e-x〉 implies that,
for a givenε, the dynamically averaged limit is always below
the static limit; in fact, a result of our variational treatment is
that the Laplace transforms of e-〈εk〉t and 〈e-εkt〉 are actually
rigorous lower and upper bounds on the survival probability
for a system initially at equilibrium.

In the intermediate regime of comparable reaction and
environmental relaxation rates, achieving a universal ap-
proximation scheme has proved to be rather difficult, resulting
in many different approaches. For the purposes of this paper,
the first approach was the Wilemski-Fixman (WF) closure
approximation applied to reaction dynamics in polymers.16,17

Related subsequent work has focused on both the derivation
and region of validity of the approximation. Higher order
corrections to the WF approximation can be obtained through
perturbation theory.12,18 In another perturbative approach, the
static and dynamically averaged limits can be well described
separately, increasing the dynamical range that can be studied
through interpolation.19 Other, perturbative20,21 and nonpertur-
bative22-25 approaches have also been employed for this
problem. While the WF closure approximation is only applicable
for the case of equilibrium initial conditions, many of the other
approaches cited above do not require this restriction. Soon after
the WF approximation was published, Doi showed that it could
be derived from an variational upper bound on the decay rate
of the survival probability.26 Improvements to the WF closure
can then be generated through different choices of the trial
function.

In this paper we develop variational upper and lower bounds
on the survival probability itself. Doi’s variational approximation
is related to the upper bound derived here, but the derivation is
quite different. We follow the formulation of the problem given
in ref 27, specialized to diffusion influenced reactions in systems
with an environmental coordinate that has bounded fluctuations.
Like the WF approximation, the bounds are rigorous only in
the special case of an equilibrium initial distribution, though
they can be of use in approximating the survival probability
for nonequilibrium initial conditions as well. Much like the
situation when using variational principles in quantum electronic
structure, the errors in most observable for the nonequilibrium
situation are of first order in the deviation from the exact result
for the solution of the diffusion equation, while the equilibrium
averaged functional itself has errors only to second order (like
the energy in the ordinary variational problems of quantum
mechanics).

We note that other related variational functionals have been
introduced for the problem of diffusion through a porous
material28,29 and subsequent development of complementary
variational bounds for this application can be found in refs 30-
32. Although these studies are closely related to the present
work, they are distinct. In those studies, the sinks, or traps, serve
to define (complicated) absorbing boundary conditions within
which particlesfreely diffuse. Accordingly, treatment of the
boundary conditions become the central focus of these ap-
proximations, whereas in the model described above, the
reaction enters as a sink function in the diffusion equation rather
than being incorporated directly into the boundary conditions.

The organization of the paper is as follows. In section II,
after formulating the average rate problem, we indicate how
the intermittency observable in single molecule experiments can

be quantified through the higher order moments of the survival
probability. In this section, we also discuss the WF approxima-
tion and its relationship to perturbative approaches in order to
put our approach into context. The derivation of our variational
approximations to the survival probability is presented in section
III and is similar to that found in ref 27. In section IV we offer
a comparison between the exact solution of two solvable
examples and our approximations. Explicit expressions needed
to calculate the bounds for the examples, as well as the
connection between the present work and Doi’s variational
functional are contained in Appendices. Throughout the paper
both the formalism and examples focus on Markovian environ-
ments, though the method may be generalized to approximate
non-Markovian processes as well.

II. Background

A. Formulation of the Problem. We begin with the
Smoluchowski equation given in eq 2 that describes the time
evolution ofΨ(r, t), the probability of finding the system with
environmental variabler at time t. (For consistency with the
examples given below,r is taken to be a scalar variable, though
the formalism remains the same when generalized to higher
dimensions.) We assume thatr is confined by an external
potentialU(r). The diffusion operator in eq 2 is then given by
D ) -∂rD0e-âU(r)∂reâU(r), whereD0 is the diffusion coefficient
and â ) 1/kBT is the inverse temperature. In contrast to free
diffusion in which the mean-square fluctuations are unbounded
and the equilibrium distribution vanishes, diffusion confined by
an external potential has finite mean-square fluctuations deter-
mined by the equilibrium Boltzmann distribution:Ψeq(r) )
e-âU(r).

It is convenient to consider also the adjoint diffusion equation.
SubstitutingΨ(r, t) ) Ψeq(r)F(r, t) in eq 2, and using the
propertyDΨeqF ) ΨeqL F for the adjoint operatorL , gives
the adjoint diffusion equation33

with L ) -eâU(r)∂rD0e-âU(r)∂r. For use in future derivations,
we note that thatL is a semipositive definite, self-adjoint
operator over the equilibrium distribution, i.e.,〈AL A〉 g 0, and
〈AL B〉, for any functionsA(r) andB(r).

SinceF(r, t) satisfies the adjoint (or backward) Smoluchowski
equation,F(r, t) can be interpreted as the probability that the
system initially at r remains unreacted at timet.33 The
appropriate initial condition is thenF(r, 0) ) 1. The starting
point for our discussion is the Laplace transform of eq 4

where we have denoted the Laplace transformed density byF̂(r,
ω) ) ∫0

∞ dt e-ωt F(r, t).
The main quantity of interest is the survival probabilityS(t),

defined as the probability that the reaction has not occurred at
time t, can be obtained by averagingF(r, t) over the initial
distribution, Ψ0(r): S0(t) ) ∫ dr Ψ0(r)F(r, t) ≡ 〈F(t)〉0. The
moments of the survival probability are also of interest since
they define the meannth moment passage times

which are measures of the decay rate.τ(n) can be conveniently
written in term of the Laplace transform of the survival

∂tF ) - L F - εk(r)F (4)

(ω + L + εk(r)) F̂ ) 1 (5)

τ0
(n) ) - ∫0

∞
dt tn Ṡ0(t) (6)
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probability as

In particular, the mean first passage time (MFPT) is simplyτ0

) Ŝ0(0). For equilibrium initial conditions,Ψ0(r) ) Ψeq(r), we
denote the survival probability and MFPT byS(t) ) 〈F(t)〉 and
τ ) Ŝ(0), respectively.

B. Intermittency. For many chemical reactions, a large free
energy barrier induces a time scale separation between the mean
lifetime of an individual reactant molecule and the relatively
fast elementary time scale of the environmental dynamics.
Consequently, these reactions are in the dynamically averaged
limit in which the rates are determined by near equilibrium
stochastic processes. Here, the probability per unit time that an
individual molecule undergoes the reaction is a constant equal
to the average reaction rate. Thus, the kinetics are described by
the usual first order rate law, and the statistics of the lifetimes
of individual molecules obey Poissonian statistics.

However, this description breaks down when the stochastic
dynamics of the environment become slow. Then, the lifetime
of an individual reactant molecule is dominated by the rare
configurations of the environment poised to react. As a result,
the average lifetime is not determined by the most probable
one, but primarily by the tails of the distribution. In this case,
the statistics of the stochastic trajectories of the molecule can
not be described merely by the average, but higher order
moments are necessary as well, i.e., they are non-Poissonian.
A measurement of the average rate from a large ensemble of
molecules does not clearly indicate the extent to which the
dynamics is determined by the tails of the environmental
distribution. On the other hand, the origin of nonexponential
relaxation in slowly fluctuating environments such as glasses
is still incompletely understood. Consequently, monitoring single
molecule reactions can give insights to this unresolved problem
by elucidating the impact that rare configurations have on the
mean reaction rate.

To describe the non-Poissonian character of single molecule
time traces requires the evaluation of multitime correlation
functions. These have been hard to describe in a simple way.
Here we introduce the idea of an intermittency growth rate.
Although the higher order corrections clearly will be multi-
exponential, the magnitude of the deviation can be roughly
characterized by a typical growth rate. This is much like the
time-honored procedure of characterizing even non-exponential
decays by a mean first passage time.

Analyzing the statistics of a single molecule experiment that
measures the apparent instantaneous lifetime associated with
individual reaction events can distinguish between these types
of reactions. Consider a hypothetical reaction in which the
product, once formed, is recycled very rapidly back to the
reactant state. The qualitative time traces for two single molecule
experiments are illustrated in Figure 1. In contrast to the signal
for a rapidly relaxing environment shown in Figure 1a, the signal
for slowly fluctuating environments is intermittent: long periods
of inactivity separating clustered measurements as shown in
Figure 1b.

There are several ways to characterize this intermittency
quantitatively. Ideally the system should be recycled to the
starting point instantaneously on the time scale of the environ-
mental fluctuations. We can define a nearly instantaneous
survival probability,F(r1, t1; r2, t2), as the probability of no
excursion being found between timest1 and t2 where the

environmental variable isr1 and r2, respectively; that is,
equivalently, none being found in the timeτ ) t2 - t1 around
th12 ) (t1 + t2)/2

This probability can be correlated at different nonoverlapping
times (t1 < t2 < t3 < t4)

whereth12 ) (t1 + t2)/2, andth34 ) (t3 + t4)/2 and where we take
τ ) t2 - t1 ) t4 - t3. We can approximate this as the limitth12

f th34 and averaging over environmental fluctuations which
modulate the rate

The deviation of the ratioR2(τ) ) S2(τ)/S(τ)2 from the
Poissonian valueR2(τ) ) 1 is a measure of the intermittency.
The intermittency ratioR2(τ) can be evaluated by a path integral
formalism.34,35 Formally, the solution to eq 1 for a particular
trajectoryr(t) can be written as

The survival probability is then the average of this exponential
over all possible paths (subject to specified initial and final
conditions). From this path integral representation, it can be
readily shown thatS2(t) is simply the survival probabilityS(t)
with the replacementε f 2ε.34,35 This correspondence allows
us to investigate intermittency directly by analyzing the original
Smoluchowski equation. We can then use any of our variational
approximations to the survival probability for the problem with
an enhanced sink strength 2ε to evaluate the growth rate of the
intermittency ratio,S2(τ)/S(τ)2 defined in this way. While a
limited characterization of the higher order statistics, the
intermittency growth rate shows at a glance where big deviations
from Poission statistics are expected.

C. WF and Related Approximations. In this subsection,
we will discuss the WF approximation to reaction dynamics16,17

and indicate some connections to previous work on this problem.
Not only does this put the present method into proper context,
it also provides an opportunity to define the quantities of interest
throughout the paper.

The derivation of the WF approximation consists of two steps.
First, averaging eq 5 overΨeq(r) gives the Laplace transformed
survival probabilityŜ(ω) in terms of〈k F̂〉

τ0
(n) ) n (-1)(n-1) dn-1

dωn-1
Ŝ0(ω)|ω)0 (7)

Figure 1. Schematic time traces of two single molecule experiments
where a reaction event gives a vanishing signal. (a) Poissonian statistics.
(b) non-Poissonian statistics.

F̃(τ| th12) ) F(r1, t1; r2, t2) (8)

F̃(τ| th12)F̃(τ| th34) ) F(r1, t1; r2, t2) F(r3, t3; r4, t4) (9)

S2(τ) ) 〈F̃(τ)2〉 (10)

Ψ(r, t) ) exp [-ε ∫0

t
dt k(r(t))] (11)
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where we have used〈L F̂〉 ) 0, and the self-adjoint property
of L. On the other hand, eq 5, can be written as the integral
equation

Multiplying this equation byk and taking the average yields an
alternative equation involving〈k F̂〉,

In the WF closure approximation, it is assumed that the system
is always nearly in local equilibrium, implying that the reduced
probability density has no spatial dependence,F̂(r, ω) ) V̂(ω).
Requiring that this approximation gives a consistent expression
for 〈k F̂〉 leads to the approximationV̂(ω) ≈ 〈k F̂〉/〈k〉. Applying
the approximation to right-hand side of eq 14, together with eq
12, gives the WF approximation to the survival probability

whereD̂(ω) ) 〈k(ω + L )-1 k〉.
Here, a remark about notation is necessary. Ifh1 andh2 are

two arbitrary functions of the dynamical variabler, then〈h1(ω
- L )-1h2〉 denotes the Laplace transform of the time correlation
function betweenh1(r(t)) andh2(r(0)). Explicitly,

where

and G(x, t|y) ) e-Dt δ(x - y) is the Green’s function in the
absence of the sink term. Thus,D̂(ω) in eq 15 is identified as
the Laplace transform of the sink-sink correlation function,
D(t) ) 〈k(t)k(0)〉.

Since the WF approximation assumes that the system is
always near equilibrium, it becomes exact in the dynamically
averaged limit (smallε/D0). However, the approximation works
surprisingly well in some cases even when this equilibration
assumption is violated.29 The integral equation in eq 13 can be
expanded in a perturbation series about the dynamical limit in
powers ofε. The closure approximation is a particular summa-
tion of higher order terms, as shown in ref 12. Consequently,
this resummation of the perturbation series accounts for the
success of the approximation even when the assumption that
the system is approximately in equilibrium is not valid.

The WF approximation becomes less accurate as the envi-
ronmental relaxation slows. The alternative integral equation

is a more useful representation to study the problem near the
static limit (large ε/D0); this can also be expanded in a
perturbation series for〈F̂〉, but this time the expansion is about
the static density in powers ofD0. In order to increase the
accuracy over a wider range of parameters, interpolation
schemes have been proposed incorporating the lowest order
terms obtained from eqs 13 and 18 in a hybrid Pade´ approxi-

mant.19 We approach this same issue by employing a variational
procedure to generate this interpolation.

III. Variational Bounds

In this section we derive the variational bounds

valid for any functions ê(r, ω) and æ(r, ω). These are
complementary bounds on the survival probability for equilib-
rium initial conditionsŜ(ω) ) 〈F̂(ω)〉. The lower bound is based
on eq 5, whereas the upper bound is derived from the equivalent
integral equations, eq 13 or eq 18. In order to present the
operator algebra clearly, we set the initial conditionF(r, 0) )
f(r) and setf(r) ) 1 at the end of the derivation. Then, the exact
solution for the probability density is formallyF̂ ) (ω + L +
εk(r))-1 f, and the bound in eq 19 is on the quantity〈F̂ f〉.

We first consider the lower boundF[æ]. We want to construct
a functional such that its functional derivative is

Consequently, the stationary conditionδF[æ*] ) 0 implies that
æ* satisfies eq 5, i.e., the exact density optimizesF[æ]. Since
L is self-adjoint, the functional

satisfies eq 20 and has the optimal solutionæ* ) F̂ with F[æ*]
) 〈F̂ f〉. The positive-definite property ofL ensures that the
quadratic term ofF[æ] is negative. Therefore, the stationary
solution maximizesF[æ], proving the lower bound inequality
in eq 19.

We focus now on the similar derivation for the upper bound.
Multiplying eq 13 byεk(r) (to make the second term symmetric)
gives the starting point for this derivation

Proceeding as before, we want a functionalM[ê] whose
variational derivative is

so thatδM[ê*] ) 0 implies ê* is the solution to eq 22, i.e.,
M[ê] is optimized byê* ) F̂. The self-adjoint property ofL
ensures that the functional

satisfies eq 23. Here, the stationary value is a minimum ofM[ê],
since this time the quadratic term is positive. The minimum is
at ê* ) F̂ with M[ê*] ) - 〈ê* εk(ω + L )-1 f〉. Using (ω + L
+ εk) F̂ ) f to eliminateê* εk in this expression forM[ê*]
gives the upper bound

This proves the upper bound inequality in eq 19, with

The subscript stands for “dynamical” referring to diffusion
propagator of the integeral equation (eq 13).

F[æ] e 〈F̂〉 e K[ê] (19)

δF[æ] ) (ω + L + εk(r)) æ - f (20)

F[æ] ) - 〈æ (ω + L + εk) æ〉 + 2 〈æ f〉 (21)

εkF̂ ) εk
1

ω + L
f - εk

1
ω + L

εk F̂ (22)

δM[ê] ) (εk + εk
1

ω + L
εk) ê - εk

1
ω + L

f (23)

M[ê] ) ε〈k ê2〉 + ε
2 〈ê k (ω + L )-1 k ê〉 -

2ε〈ê k (ω + L )-1 f〉 (24)

〈F̂ f〉 - 〈f (ω + L )-1 f〉 e M[ê] (25)

Kdyn[ê] ) M[ê] + 〈f (ω + L )-1 f〉 (26)

Ŝ(ω) ) 1
ω

(1 - ε〈k F̂〉) (12)

F̂ ) 1
ω + L

- ε
1

ω + L
kF̂ (13)

〈k F̂〉 ) 1
ω

〈k〉 - ε〈k (ω + L )-1 kF̂〉 (14)

ŜWF(ω) ) 1
ω (1 -

ε〈k〉2

ω(〈k〉 + εD̂(ω))) (15)

〈h1(ω - L )-1h2〉 ) ∫0

∞
dt e-ωt 〈h1(t) h2(0)〉 (16)

〈h1(t) h2(0)〉 ) ∫∫ dxdy h1(x)G(x, t|y) Ψeq(y) h2(y) (17)

F̂ ) 1
ω + εk(r)

- 1
ω + εk(r)

L F̂ (18)
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From our discussion in the previous section, it is natural to
consider the other integral equation (eq 18) as the starting point
of the derivation. This gives an alternative upper bound. Since
the derivation is analogous to the derivation ofKdyn[ê], we just
quote the result:〈F̂〉 e Kst[ê], whereKst[ê] can be obtained by
making the replacementL T εk in the expression forKdyn[ê]
(see eq 30 below). Here, the subscript stands for “static”,
referring to static propagator (ω + εk)-1 of the integeral equation
(eq 18).

Setting f(r) ) 1, we have the final results for the comple-
mentary bounds

where

andK[ê] is either of the following expressions

The expression forKdyn[ê] has been simplified using〈L A〉 )
0, for arbitraryA(r).

As stated above, this bound applies only to the case of an
equilibrium initial condition. It may appear that this restriction
can be relaxed by using a nonequilibrium weight to define the
averages in the derivation ofF[æ] and K[ê]. However, the
bounded character of the result depends on the self-adjoint and
positive definite properties ofL which fail to hold for arbitrary
initial distributions. Nevertheless, the variational equations for
an equilibrium initial distribution can be used to approximate
F̂(r, ω) by the trial function that optimizes〈F̂(ω)〉, e.g.,F̂(r, ω)
≈ ê*( r, ω). Naively, one expects that the approximation should
be valid for regions of low potential, since the equilibrium
distribution used to determine the optimized wave function
suppresses errors for larger.

Before considering specific examples of this approach, it is
instructive to look at these bounds for the most elementary trial
function, a constant (with respect tor).

For æ ) c(ω), the lower bound becomesF[c] ) - c2(ω +
ε〈k〉) + 2c. The maximum ofF[c] is at c* ) (ω + ε〈k〉)-1,
giving the optimum valueF[c*] ) c*. Thus, we see that the
lower bound is〈F̂dyn(ω)〉 ) (ω + ε〈k〉)-1, the Laplace transform
of the dynamically averaged limit given in eq 3.

We now consider the upper bound given byKst[ê], when ê
) c(ω). SinceKst[c] ) 〈(ω + εk)-1〉 is independent ofc, the
upper bound is simply〈F̂st(ω)〉 ) 〈(ω + εk)-1〉, the Laplace
transform of the static limit given in eq 3. Combining these
limits, we have the result

giving rigorous bounds on the survival probability consistent
with Jansen’s inequality applied to eq 3, as indicated in the
Introduction. Notice that this result depends on equilibrium
initial conditions; obviously, for a given sink function, it is
possible to choose initial conditions that result in a very rapidly
decaying survival probability, even in the static limit.

Finally, we consider the upper bound given byKdyn[ê], when
ê ) c(ω). Kdyn[c] has a minimum at (c*)-1 ) ω (〈k〉 + ε〈k (ω

+ L )-1 k〉)/〈k〉. Evaluating the upper bound atc* recovers the
WF approximation to the survival probability (eq 15),Kdyn[c*]
) ŜWF(ω). Combining this with the lower bound give the limits

This result is reminiscent of Doi’s variational bound on the
decay rate. Indeed, it is shown in Appendix A that Doi’s formula
is related to the upper bound obtained by settingω ) 0 in
Kdyn[ê], i.e., the bound of the MFPT,τ ) Ŝ(0).

For general trial functions, we expect that whetherKst[ê] or
Kdyn[ê] gives a more stringent upper bound depends on the
relative rates of the environmental relaxation and sink parameter
strength. For example, near the static limit,Kst[ê] will presum-
ably provide a smaller upper bound thanKdyn[ê] for the same
trial function. However, it is important to note that eitherKst[ê]
or Kdyn[ê] is capable of determining the survival probability to
arbitrary accuracy, limited only by the flexibility of the trial
function. For the purposes of demonstrating the approach, it is
enough to consider only one of these bounds. For clarity of
presentation, we will focus on the bound given byKdyn[ê] in
the remainder of this paper.

IV. Examples

In this section we apply the complementary variational bounds
to two problems in one dimension. One advantage of a
variational formulation is that it may facilitate analytic ap-
proximations to the problem in higher dimensions provided the
trial function is simple enough. We have used the present
variational method for a highly multidimensional problem
involving fluorescence quenching in a chain polymer which is
partially ordered. This latter problem models fluorescence
resonance energy transfer in partially denatured proteins. A
report of that work will appear elsewhere. In the examples
presented below we evaluate the bounds numerically for chosen
trial functions. Admittedly, in one dimension it is easier to
integrate eq 2 directly to obtain a numerical solution than to
evaluate the bounds presented here. However, the purpose of
these examples is to illustrate this variational approach and to
provide a foundation for analyzing more difficult problems.

We assume a harmonic confining potential centered at the
origin, âU(r) ) r2/2θ2. In this potential, the average position
vanishes, but the mean-square displacement is finite,〈r2〉 ) θ2.
The Green’s function for the diffusion operator, used to calculate
the correlation functions in our approximations, is given by

where φ(t) ) 〈r(t) r(0)〉/θ2 is the pair correlation function
describing the dynamics of the environmental fluctuations. The
form of the Green’s function is determined by the harmonic
potential, not the nature of the fluctuational dynamics. For
Markovian dynamics, the fluctuations decay exponentially,φ(t)
) exp(-t/τr), where τr ) θ2/D0 sets the time scale of the
diffusion within the harmonic well. However, since eq 33 is
the Green’s function for non-Markovian fluctuations,10 these
dynamics can be considered within the variational formalism
as well, if in fact these fluctuations are a projection of a higher
dimensional Markov process inr space itself.

In these examples, we assume Markovian dynamics for
simplicity, as well as equilibrium initial conditions. We consider

F[æ] e Ŝ(ω) e K[ê] (27)

F[æ] ) - 〈æ (ω + L + εk) æ〉 + 2〈æ〉 (28)

Kdyn[ê] ) ε〈k ê2〉 + ε
2 〈ê k(ω + L )-1 k ê〉 + 1

ω
- 2ε

〈ê k〉
ω
(29)

Kst[ê] ) 〈ê L ê〉 + 〈ê L (ω + εk)-1 L ê〉 + 〈(ω + εk)-1〉 -

2〈ê L (ω + εk)-1〉 (30)

〈F̂dyn (ω)〉 e Ŝ(ω) e 〈F̂st(ω)〉 (31)

〈F̂dyn(ω)〉 e Ŝ(ω) e ŜWF(ω) (32)

G(x, t|y) ) 1

x2πθ2 (1 - φ
2(t))

exp[- (x - φ(t)y)2

2θ2 (1 - φ
2(t))] (33)
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two forms of the sink function: quadratic,k(r) ) r2/θ2, and
exponential,k(r) ) e-Rr. Both forms of reaction sink (with a
harmonic confining potential) have applications that can found
in in the literature. The diffusion-reaction problem with a
quadratic sink has been used to model diffusion through a
fluctuating bottleneck of radiusr and can be solved explic-
itly.11,12 The exponential sink has been used to model the
dynamics of ligand binding in myoglobin; here, the environ-
mental variabler describes the binding free energy barrier,
where the fluctuations arise from transitions between different
conformational substates of the protein.8 This problem can be
solved numerically by integrating the differential equation
directly.19 Even though this solution is numerical, we will still
refer to it as the exact survival probability to easily distinguish
it from our variational bounds.

To proceed, the trial function must be specified. Motivated
by the limiting expressions for the survival probability, we
choose a trial function that is a linear combination ofF̂st(ω, r)
) 1/(ω + εk(r)) and its inverse:ê ) c1(1 + εk(r)) + c2Fst(ω,
r). Allowing the coefficients of the first two terms to vary
independently gives the trial function

where the coefficients{c} are variational parameters. Choosing
coefficients as variational parameters, rather than other func-
tional forms has the advantage that the optimization ofF[æ]
andK[ê] can be done explicitly, leading directly to interpolation
formulae. Forê1 the expressions for the bounds are given in
Appendix B withg ) (1, k(r), F̂st(ω, r)).

More flexible trial functions can lead to still more accurate
approximations. As an example, we choose the trial function

where the coefficientc1 and ωp are now both variational
parameters.ê2 interpolates betweenê2 ) F̂st(ω, r) at ωp ) ω
andê2 approximately constant for sufficiently largeωp. To find
the optimal bounds, we first express the stationary valuec1 as
a function ofωp (from the results of Appendix B withg )
(F̂st(ωp, r))) and then optimize this expression with respect to
ωp.

We note that, technically, the lower bound is somewhat less
involved to calculate than the upper bound, sinceF[æ] only
requires calculation of various equilibrium averages, whereas
K[ê] needs the Laplace transform of time correlations as well.

Below, we compare the exact (or numerical) survival prob-
ability to the boundsF[{c}] and Kdyn[{c}] given eq 27. We
also consider the bounds in eqs 32 and 31; they serve as a
reference, placing our results into context. (Recall that the latter
bounds were obtained by settingc2 ) c3 ) 0 in the trial function
ê1). For reference, the quantities of interest are collected in Table
1.

A. Harmonic Sink. For a harmonic sink, many of the
quantities needed to calculate the bounds can be obtained
analytically. However, these exact formulae are not very

Figure 2. Survival probability as a function of frequencyω for selected values of the strength parameterε (a-d) for the harmonic sink. Heavy
lines correspond to exact (solid),F[{c}] (long dashed),Kdyn[{c}] (dashed). Light lines correspond to〈F̂st〉 (dashed),ŜWF (dotted-dashed),〈F̂dyn〉 (long
dashed).ω is in units of 1/τr ) D0/θ2. Not all lines are distinct in every plot, since they may overlap. Only the bound fromê1 are shown, since the
bounds fromê2 are not easily distinguishable from the exact solution at the scale of the plot.

ê1 ) c1 + c2k(r) + c3Fst(ω, r) (34)

TABLE 1: Symbols for Bounds Considered in Examples

lower bound upper bound

F[æ] Kdyn[ê]
〈F̂dyn〉 ) (ω + ε〈k〉)-1 〈F̂st〉 ) 〈(ω + εk)-1〉

ŜWF(ω)

ê2 ) c1F̂st(ωp, r) ) c1/(ωp + εk(r)) (35)
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enlightening for our purposes. We note here that, for this
problem, the equilibrium average of static density〈F̂st(ω)〉
diverges atω ) 0. This is relevant to our discussion, since our
trial function contains this term, affecting the variational bounds
at smallω. This is a peculiarity of this specific form of potential
and reaction sink.

In Figure 2 we show the survival probability as function of
frequency for increasing values of the reaction strengthε. As
noted in the Introduction, for short enough times〈Fst(t)〉 and
〈Fdyn(t)〉 agree for any value ofε; for correspondingly largeω,
eq 31 implies that the variational bounds solve the survival
probability exactly, as can be seen in the each of the plots in
Figure 2.

For ετr ) 0.1, the system is near the dynamically averaged
limit. Figure 2a shows that all approximations except〈F̂st〉 are
in good agreement with the exact answer. Asε increases, the
approximations become less accurate, particularly for smallω.
The variational boundsF andKdyn are much closer to the exact
survival probability than the other bounds asε increases. For
ετr ) 10.0, Figure 2d, the environmental relaxation is slow
enough that the WF approximation is inadequate. At this value
of ε it is clear that the full variational bounds are accurate down
to ω ≈ 2.0; for smaller frequencies, the lower boundF[ê1]
decreases slowly and the upper boundKdyn[ê1] increases rapidly
asω f 0. This behavior is due to the diverging static density,
as mentioned above. The variational bounds from the trial
function ê2 does not show this behavior at smallω, and
approximates the survival probability well throughout the
parameter range, with a maximum deviation from the exact
survival probability of only 5% for the upper bound atω ) 0
for ε ) 10.

B. Exponential Sink. In this example, we consider the sink
functionk(r) ) e-Rr. While our methods are still applicable to
the full survival probability, for brevity we will focus on the
MFPT, τ ) Ŝ(0). Figure 3a shows the dependence ofτ on
reaction strengthε for R ) 1/θ. The agreement betweenτ from
the dynamically averaged and static limit (τdyn andτst) with the
exact MFPT clearly indicates thatε covers the full range from
the dynamically averaged to static limit. Consequently, the
bounds given by both trial functionê1 andê2 on the MFPT are
close to the numerical result for both small and large values of
ε as well. These bounds are in reasonable agreement with the
numerical solution in the entire range, with a fractional error
only as large as 30% for trial functionê1. The bounds from the
trial functionê2 have excellent agreement with integrated result,
giving a fractional error of less than 1%.

For largerR, the probability distribution forr < 0 is depleted
very rapidly, potentially shifting the distribution further from
equilibrium; of course, this still depends on the strengthε. Figure
3b shows the MFPT as a function ofε for R ) 3/θ. While
qualitatively similar to Figure 3a (withR ) 1/θ), the bounds
from trial functionê1 are hardly more restrictive than the bounds
determined fromτst, τWF, andτdyn. Trial functionê2 provides a
much stricter bound, with a with fractional error of 10%.

We now consider the question of intermittency in this
example. A simple approximation for intermittency ratioR2(t)
) S2(t)/S(t)2 defined in section IIb can be obtained using
exponential fits to the individual survival probability moments
expected from the mean first passage times:S(t) ≈ e-t/τ. Then,
the intermittency growth rateκI ) -t-1 log R2(t) can be written
as a function of the reaction strength as

whereτε is the MFPT for the reaction strengthε. A deviation

in the growth rate from zero indicates that the statistics are non-
Poissonian. Figure 4 shows the intermittency growth rate as a
function of ε for the exact solution and the upper and lower
bound, as well as the exact inverse MFPT. The intermittency
growth rate has the expected behavior of vanishing in the
dynamically averaged limit (smallε) and increasing as the
environment slows (ε increases). The intermittency growth rate
is smaller over most of the range than the rate itself, so small
errors inτ are amplified inκI. The estimates from the upper
and lower bounds with trial functionê1 agree qualitatively with
the numerical result, but only within a factor of 2 ofκI. The

Figure 3. MFPT (τ/τr) as a function of the strength of the sinkετr,
whereτr ) θ2/D0, for the exponential sink with (a)R ) 1/θ and (b)R
) 3/θ. Plots for the exact, upper, and lower bounds are labeled on
graph. As in Figure 2, only the bounds fromê1 are shown.

Figure 4. Intermittency growth rateκIτr as a function of the strength
of the sinkετr, whereτr ) θ2/D0, for exponential sink (R ) 1/θ). Results
for exact, lower boundF, and upper boundKdyn are labeled on graph.
Also shown, is the inverse MFPTτr/τ (scale on the right). As in Figure
2, only the bounds fromê1 are shown.

κI ≈ 2τε
-1 - τ2ε

-1 (36)
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trial function ê2 provides however a highly accurate estimate
for the intermittency growth rate (within 3%). We note that the
intermittency growth rate as analyzed here is not bounded by
either approximation since we have taken the difference between
the each bound at two values ofε. It is possible to develop
more refined variational bounds involving the moments of the
survival probability explicitly which we hope to pursue in the
future.

V. Conclusion

Fluctuating environments greatly influence the kinetics of
chemical reactions, when their relaxation is slow. Motivated
by such problems, we have developed approximations based
on a varitional principle that provides bounds for survival
probability. The rigorous bounds are quite general and can be
usefully applied to many dimensional problems which have
more elusive solutions. For example, the variational approxima-
tions developed here have been generalized to treat reactions
with more complicated fluctuational dynamics, such as fluo-
rescence quenching between monomers in a polymer chain,
where the polymer is usually modeled as a chain of monomers
connected sequentially by harmonic potentials, resulting in pair
correlations that contain a broad distribution of relaxation rates.
This situation is described by a corresponding multi-dimensional
diffusion problem that is difficult to solve numerically, but can
treated with our variational approximations. These approxima-
tions also allow us to quantify intermittency which can be
observed using single molecule techniques. An application to
fluorescence resonance energy transfer in single-molecule
folding experiments is described elsewhere.

Appendix A: Relation to Doi’s Variational Bound

In ref 26, Doi presented a variational lower bound on the
decay rateκ. Both the form of this bound as well as its derivation
is apparently very different than the one given in the present
paper. The expression for this bound is greatly simplified when
κ is small. We show here the simplified bound in ref 26 is in
fact the same bound obtained for the MFPT given byKdyn[ê].

In the notation of the present paper, eq 47 of ref 26 gives the
bound

Here, {λn} and {æn} are the respective eigenvalues and
eigenfunctions of the adjoint operator:L æn ) λnæn. The sum
in eq A1 excludes the lowest eigenvalueλ0, which vanishes
since the system eventually comes to equilibrium. In operator
notation,

where

Ĥkê(ω) is the Laplace transform of〈δ[k(t)ê(t)] δ[k(0)ê(0)]〉,
whereδ[kê] ≡ kê - 〈kê〉. The equilibrium correlation〈k ê〉 has
been subtracted, sinceλ0 is excluded in the summation. Thus,
eq A1 can be written as

Now consider the bound given byŜ(ω) e Kdyn[ê]. Minimizing
Kdyn[Rê] with respect toR gives the equivalent bound

Written in terms ofĤkê(ω) this becomes

(For an alternative derivation of eq A6, setg ) (ê) in eq B9).
Since the long time limit of〈δ[k(t)ê(t)] δ[k(0)ê(0)]〉 vanishes,
Ĥkê(0) is finite. Consequently, evaluating eq A6 atω ) 0 gives
the bound on the MFPTτ ) Ŝ(0):

Thus, eq A4 and eq A7 are equivalent provided thatκ-1 is
identified as the MFPTτ.

Appendix B: Explicit Expressions

We show the explicit expressions for the optimumF[{c*}]
andKdyn[{c*}] using the trial function of the formê ) ∑ cigi(r,
ω). In the derivations below, we make use of the definition of
two vectors: the vector of variational parametersc ) {ci} and
the vector of basis functionsg ) {gi}. In this notation the trial
function can be written asê ) J† ‚ c, where “†” denotes the
matrix transpose.

1. Lower Bound F[{ci*}]. To find the maximum ofF[{c}]
with respect toci, we first write eq 21 in matrix form

where the matrixA has elements

The maximum ofF is then straight-forward: (c*)† ) 〈g†〉 ‚ A-1

and

2. Upper BoundKdyn[{c*}]. The expressions for the station-
ary values ofKdyn[c] andF[c] are similar. Here, the minimum
of Kdyn[c] is at (c*)† ) 〈g†k〉/ω ‚ Ã-1, and

where the components ofÃ are

As it is written, this formula cannot be naively evaluated at
ω ) 0. To write this in a more convenient form, we explicitly
subtract the equilibrium component of the correlation function
in the second term:

where we have used the notationδ[gik] ) gik - 〈gi k〉. This

κ g I0[ê] )
ε〈kê〉2

〈kê2〉 + ε∑n*0λn
-1〈kænê〉2

(A1)

∑
n*0

λn
-1 〈kænê〉2 ) Ĥkê(ω ) 0) (A2)

Ĥkê(ω) ) 〈ê k (ω + L )-1 k ê〉 - 〈k ê〉2/ω (A3)

κ g
ε〈k ê〉2

〈k ê2〉 + εĤkê(0)
(A4)

Ŝ(ω) e
1
ω

-
ε

2〈k ê〉2

ω2(ε〈k ê2〉 + ε
2〈ê k (ω + L )-1 kê〉)

(A5)

Ŝ(ω) e
〈k ê2〉 + εĤkê(ω)

ω(〈k ê2〉 + εĤkê(ω)) + ε〈k ê〉2
(A6)

τ e
〈k ê2〉 + εĤkê(0)

ε〈k ê〉2
(A7)

F[c] ) -c † ‚ A ‚ c + 2〈g†〉 ‚ c (B1)

Aik ) 〈gi (ω + L + εk) gk〉 (B2)

F[c*] ) 〈g†〉 ‚ A-1 ‚ 〈g〉 (B3)

Kdyn[c*] ) 1
ω

- 1

ω2
〈g† k〉 ‚ Ã-1 ‚ 〈k g〉 (B4)

Ãik ) ε〈gi k gk〉 + ε
2〈gi k (ω + L )-1 k gk〉 (B5)

ε
2〈gi k (ω + L )-1 k gk〉 ) ε

2〈δ[gik] (ω + L )-1 δ[kgk]〉 +

ε
2

ω
〈gi k〉 〈k gk〉 (B6)
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allows us to writeÃ as the sum of two matrixes,Ã ) Ã1 + Ã2

with

and Ã2 is the direct product ofε〈k g〉/xω with itself (second
term of eq B6). Breaking upÃ in this way allows us to use the
Sherman-Morrison formula36 to expressÃ-1 in terms ofÃ1

-1:

Substituting this into eq B4 leads to our final result,

Since the equilibrium correlations have been subtracted in the
definition of Ã1 (eq B7), it is clear that eq B9 is finite atω )
0.
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Ãik
1 ) ε〈gi k gk〉 + ε

2 〈δ[gik] (ω + L)-1 δ[kgk]〉 (B7)

Ã-1 ) Ã1
-1 + ε

2
(Ã1

-1 ‚ 〈k g〉) X (〈g† k〉 ‚ Ã1
-1)

ω + ε
2〈g† k〉 ‚ Ã1

-1 ‚ 〈k g〉
(B8)

Kdyn[c*] ) 1

ω + ε
2〈g† k〉 ‚ Ã1

-1 ‚ 〈k g〉
(B9)
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